I. AVERAGE BEAM-BEAM KICK

Assume that both beams (strong and weak) are Gaussian beams, but not round. Denote the rms beam sizes by
(0z,0y) for the strong beam and (&,,0dy) for the weak beam. The kick felt by a particle in the weak beam with
betatron amplitudes (z,y) is given by
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where (xp,yp) denotes the location of the strong beam centroid w.r.t. the closed orbit of the weak beam.
The density distribution function of the weak beam is given by
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Therefore, the average kick given to the weak beam is obtained as
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Due to the smoothness of the integrand we can change the order of the integration, and write the relations as
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The integrations can be done analytically, and give the following results:
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that is, (Az') is the kick felt by the weak beam’s centroid from a beam with an effective beam size being equal with
the rms beam size of the strong and weak beams. Due to symmetry in « and y, (Ay’) looks similar, i.e. (Az’) with
x and y interchanged. Of course, the numerical evaluation of the average kick is done more efficiently utilizing the
well-known Bassetti-Erskine formulae.



A. Special case of round beams

To check the result, the special case of round beams can be studied, where all integrals can be performed analytically.
The single particle kick in this case is given by (o0 = 0, = gy)
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The integrals in this case cannot be separated into integrations over x and y independently, so we switch to polar
coordinates using
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The average kick becomes (6 = 6, = Gy)
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The integration over ¢ is given by (from Integrals & Series, vol.1, page 464)
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where I (z) is the modified Bessel function. If we denote by d = /:v% + yf,, the last integral to be done is
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Combining everything we recover the special case result
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Mathematica gives the result

and analogously for (Ay’).



